Enrollment No:	Exam Seat No:
----------------	---------------

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Problem Solving-II

Subject Code: 5SC03PRS1 Branch: M.Sc.(Mathematics)

Semester: 3 Date: 06/12/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Q-1			Attempt the Following questions	(07)
		a.	Generate a field of order 9.	(02)
		b.	Write β^{99} in disjoint cycle form ,where $\beta = (1\ 2\ 3)(1\ 4\ 5)$.	(02)
		c.	Suppose $\phi: z_{30} \to z_{30}$ is homomorphism and $\ker \phi = \{0, 10, 20\}$. If $\phi(23) = 9$ then determine all elements that map to 9.	(02)
		d.	True or False : Any finite cyclic group is isomorphic to Z .	(01)
Q-2			Attempt all questions	(14)
	a)		Determine the number of elements of order 5 in $z_{25} \oplus z_5$.	(06)
	b)		Find all maximal ideal in \mathbf{Z}_{12} .	(04)
	c)		Define: Conjugate Class. Also find the conjugate classes and class equation of Q_8 .	(04)
			OR	
Q-2			Attempt all questions	(14)
	a)		i. Check that $f(x) = x^2 + 312312x + 123123$ is reducible over Q ? State the result which you have use.	(06)
			ii. Compute $5^{15} \mod 7$ and $7^{13} \mod 11$. Also state result which you use.	
	b)		How many homomorphism are there from z_{20} to z_{10} ? List all homomorphism.	(04)
	c)		Find all units of $I[i]$.	(04)
Q-3	,		Attempt all questions	(14)
	a)		Solve the given equation by Gauss-Seidel method	(06)
			2x + y + z = 4, $x + 2y + z = 4$, $x + y + 2z = 4$.	
	b)		Given $y_0 = 3$, $y_1 = 12$, $y_2 = 81$, $y_3 = 200$, $y_4 = 100$. Find $\Delta^4 y_0$ without	(04)
			forming the difference table.	
	c)		If $O(G) = 10$, then how many 2-Sylow subgroup and 5-Sylow subgroups in G .	(04)
			Which of them are normal?	

OR

Q-3 Attempt all questions

Page 1 of 2

a) Find a cubic polynomial which takes the following set of values using Newton's (06)forward method.

x	0	1	2	3
y	1	2	1	10

Show that the set $Q \setminus \{-1\}$ is an abelian group with respect to the binary operation (04)b) $a*b=a+b+ab, \forall a,b \in G$.

c) i) If a is an element of group G and |a| = 7, show that a is a cube of some (04)element of G.

ii) Let $H = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \right\}$. Is H normal subgroup of $GL(2: \mathbb{R})$?

SECTION – II

Q-4 Attempt the Following questions

(07)

a. Define: Boolean Ring and give an example of it.

(02)

b. Find particular integral for $(D^2 + DD' - 6D'^2)z = x + y$

(02)

c. Classify the following partial differential equations:

(02)

 $2u_{xx} + 4u_{xy} + 3u_{yy} = 2$

 $u_{xx} + 4u_{xy} + 4u_{yy} = 0$ ii.

d. Evaluate : $\Delta \cos x$ (01)

Q-5 Attempt all questions

(14)

Find the integral surface of the partial differential equation a) (06)(x-y)p + (y-x-z)q = z, passing through the circle z = 1, $x^2 + y^2 = 1$.

(04)b)

Solve:xp + yq = pqSolve: $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6\frac{\partial^2 z}{\partial y^2} = y \cos x$ **c**) (04)

OR

Q-5 Attempt all questions

(14)

Using Newton's divided difference formula evaluate f(8), given that a)

(07)

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

Solve: $z^2(p^2 + q^2 + 1) = 1$. (04)b)

Find the characteristics of $4u_{xx} + 45 + 3u_{yy} + u_x + u_y = 2$ c) (03)

Q-6 Attempt all questions

(14)

Using Picard's method find y(0.2) given that y' = x - y; y(0) = 1 and h = 0.1a)

(05)

(04)

Solve: $x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z$. b)

(05)

Consider the initial value problem $\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$, $u(0, y) = 4e^{-2y}$ then find **c**) u(x, y) and u(1,1).

OR

Q-6 Attempt all Questions

- Using Runge-Kutta method of fourth order solve for y(0.1), y(0.2) given that (07)a) $y' = xy + y^2$; y(0) = 1.
- By using method of separation of variable solve two dimensional Laplace (07)b) equation

